高光谱图像的聚类是一个基本而具有挑战性的任务。最近的高光谱图像聚类的发展已经从浅模型演变为深度,并且在许多基准数据集中实现了有希望的效果。然而,它们较差的可扩展性,稳健性和泛化能力,主要是由离线聚类方案引起的,极大地将其应用限制为大型超光谱数据。为了规避这些问题,我们基于自我监督学习呈现了一个可扩展的深度在线聚类模型,名为Spectral-Spatial对比聚类(SSCC)。具体地,我们利用了由簇号的一维的投影头组成的对称双神经网络,以从光谱空间增强池进行双重对比度学习。我们通过隐式鼓励在群集内相似度和群集冗余之间来定义目标函数。由此产生的方法通过批量优化以端到端的方式培训,使其在大规模数据中具有稳健性,并导致未经看明数据的良好概括能力。三个高光谱图像基准的广泛实验证明了我们的方法的有效性,并表明我们通过大型边缘推进最先进的方法。
translated by 谷歌翻译
本文提出了FLGC,这是一个简单但有效的全线性图形卷积网络,用于半监督和无人监督的学习。基于计算具有解耦步骤的全局最优闭合液解决方案而不是使用梯度下降,而不是使用梯度下降。我们展示(1)FLGC强大的是处理图形结构化数据和常规数据,(2)具有闭合形式解决方案的训练图卷积模型提高了计算效率而不会降低性能,而(3)FLGC作为自然概括非欧几里德域的经典线性模型,例如Ridge回归和子空间聚类。此外,我们通过引入初始剩余策略来实现半监督的FLGC和无监督的FLGC,使FLGC能够聚集长距离邻域并减轻过平滑。我们将我们的半监督和无人监督的FLGC与各种分类和聚类基准的许多最先进的方法进行比较,表明建议的FLGC模型在准确性,鲁棒性和学习效率方面始终如一地优于先前的方法。我们的FLGC的核心代码在https://github.com/angrycai/flgc下发布。
translated by 谷歌翻译
运动多项式(与非零实际规范的双重四聚体上的多项式)描述了合理运动。我们提出了减少有界运动多项式的必要条件,以将因素化为线性因子,并给出了一种计算它们的算法。我们可以使用这些线性因子来构建机制,因为分数对应于合理运动分解为简单旋转或翻译。有界的运动多项式始终在乘以合适的实际或四元素多项式后,将分解成线性因子。我们的因素化标准使我们能够改善早期算法,以计算合适的真实或四元素多项式辅助因素。
translated by 谷歌翻译
密集的段落检索旨在根据查询和段落的密集表示(即矢量)从大型语料库中检索查询的相关段落。最近的研究探索了改善预训练的语言模型,以提高密集的检索性能。本文提出了COT-MAE(上下文掩盖自动编码器),这是一种简单而有效的生成性预训练方法,可用于密集通道检索。 COT-MAE采用了不对称的编码器架构,该体系结构学会通过自我监督和上下文监督的掩盖自动编码来将句子语义压缩到密集的矢量中。精确,自我监督的掩盖自动编码学会学会为文本跨度内的令牌的语义建模,并学习上下文监督的蒙版自动编码学学习以建模文本跨度之间的语义相关性。我们对大规模通道检索基准进行实验,并显示出对强基础的大量改进,证明了COT-MAE的效率很高。
translated by 谷歌翻译
我们提供了悖论性的闭环$ n $ linkages的完整分类,其中$ n \ geq6 $的移动性$ n-4 $或更高版本包含revolute,Prismatic或Helical关节。我们还明确地写下了$ nr $ links $ n-5 $的$ nr $链接的强大必要条件。我们的主要新工具是链接$ l $与另一个链接$ l'$之间的几何关系,这是由于将方程式添加到$ l $的配置空间而产生的。然后,我们使用此关系提高了$ l'ub $ $ l $的已知分类结果。
translated by 谷歌翻译
Masked image modeling (MIM) performs strongly in pre-training large vision Transformers (ViTs). However, small models that are critical for real-world applications cannot or only marginally benefit from this pre-training approach. In this paper, we explore distillation techniques to transfer the success of large MIM-based pre-trained models to smaller ones. We systematically study different options in the distillation framework, including distilling targets, losses, input, network regularization, sequential distillation, etc, revealing that: 1) Distilling token relations is more effective than CLS token- and feature-based distillation; 2) An intermediate layer of the teacher network as target perform better than that using the last layer when the depth of the student mismatches that of the teacher; 3) Weak regularization is preferred; etc. With these findings, we achieve significant fine-tuning accuracy improvements over the scratch MIM pre-training on ImageNet-1K classification, using all the ViT-Tiny, ViT-Small, and ViT-base models, with +4.2%/+2.4%/+1.4% gains, respectively. Our TinyMIM model of base size achieves 52.2 mIoU in AE20K semantic segmentation, which is +4.1 higher than the MAE baseline. Our TinyMIM model of tiny size achieves 79.6% top-1 accuracy on ImageNet-1K image classification, which sets a new record for small vision models of the same size and computation budget. This strong performance suggests an alternative way for developing small vision Transformer models, that is, by exploring better training methods rather than introducing inductive biases into architectures as in most previous works. Code is available at https://github.com/OliverRensu/TinyMIM.
translated by 谷歌翻译
In this paper, we propose a robust 3D detector, named Cross Modal Transformer (CMT), for end-to-end 3D multi-modal detection. Without explicit view transformation, CMT takes the image and point clouds tokens as inputs and directly outputs accurate 3D bounding boxes. The spatial alignment of multi-modal tokens is performed implicitly, by encoding the 3D points into multi-modal features. The core design of CMT is quite simple while its performance is impressive. CMT obtains 73.0% NDS on nuScenes benchmark. Moreover, CMT has a strong robustness even if the LiDAR is missing. Code will be released at https://github.com/junjie18/CMT.
translated by 谷歌翻译
Dataset distillation has emerged as a prominent technique to improve data efficiency when training machine learning models. It encapsulates the knowledge from a large dataset into a smaller synthetic dataset. A model trained on this smaller distilled dataset can attain comparable performance to a model trained on the original training dataset. However, the existing dataset distillation techniques mainly aim at achieving the best trade-off between resource usage efficiency and model utility. The security risks stemming from them have not been explored. This study performs the first backdoor attack against the models trained on the data distilled by dataset distillation models in the image domain. Concretely, we inject triggers into the synthetic data during the distillation procedure rather than during the model training stage, where all previous attacks are performed. We propose two types of backdoor attacks, namely NAIVEATTACK and DOORPING. NAIVEATTACK simply adds triggers to the raw data at the initial distillation phase, while DOORPING iteratively updates the triggers during the entire distillation procedure. We conduct extensive evaluations on multiple datasets, architectures, and dataset distillation techniques. Empirical evaluation shows that NAIVEATTACK achieves decent attack success rate (ASR) scores in some cases, while DOORPING reaches higher ASR scores (close to 1.0) in all cases. Furthermore, we conduct a comprehensive ablation study to analyze the factors that may affect the attack performance. Finally, we evaluate multiple defense mechanisms against our backdoor attacks and show that our attacks can practically circumvent these defense mechanisms.
translated by 谷歌翻译
Blind image quality assessment (BIQA) remains challenging due to the diversity of distortion and image content variation, which complicate the distortion patterns crossing different scales and aggravate the difficulty of the regression problem for BIQA. However, existing BIQA methods often fail to consider multi-scale distortion patterns and image content, and little research has been done on learning strategies to make the regression model produce better performance. In this paper, we propose a simple yet effective Progressive Multi-Task Image Quality Assessment (PMT-IQA) model, which contains a multi-scale feature extraction module (MS) and a progressive multi-task learning module (PMT), to help the model learn complex distortion patterns and better optimize the regression issue to align with the law of human learning process from easy to hard. To verify the effectiveness of the proposed PMT-IQA model, we conduct experiments on four widely used public datasets, and the experimental results indicate that the performance of PMT-IQA is superior to the comparison approaches, and both MS and PMT modules improve the model's performance.
translated by 谷歌翻译
Automatic music generation with artificial intelligence typically requires a large amount of data which is hard to obtain for many less common genres and musical instruments. To tackle this issue, we present ongoing work and preliminary findings on the possibility for deep models to transfer knowledge from language to music, by finetuning large language models pre-trained on a massive text corpus on only hundreds of MIDI files of drum performances. We show that by doing so, one of the largest, state-of-the-art models (GPT3) is capable of generating reasonable drum grooves, while models that are not pre-trained (Transformer) shows no such ability beyond naive repetition. Evaluating generated music is a challenging task, more so is evaluating drum grooves with little precedence in literature. Hence, we propose a tailored structural evaluation method and analyze drum grooves produced by GPT3 compared to those played by human professionals, exposing the strengths and weaknesses of such generation by language-to-music transfer. Our findings suggest that language-to-music transfer learning with large language models is viable and promising.
translated by 谷歌翻译